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Motivation: Trajectory
Optimization

Aircraft trajectory optimization is a problem
that has been extensively studied by the mathe-
matical community, with applications for exam-
ple in fuel consumption, flight time and noise re-
duction, as well as in collision avoidance. More
recently, a particular framework has been con-
sidered in which the aircraft dynamics have
been estimated from previous flights data [1, 2].
This setting raises the question of whether the
optimized trajectory does not deviate too much
from the validity region of the dynamics model,
which corresponds to the area occupied by the
data used to build it. Moreover, the simulated
trajectory is usually wanted in practice to "seem
real" for better acceptance by the pilots and Air
Traffic Control. These questions may both be
addressed by quantifying the closeness between
the optimization solution and the set of real
flights used to identify the model.

Mean Marginal Likelihood

We suppose that the real flights are observa-
tions of the same functional random variable
Z = (Zt) valued in C(T, E), with E compact
subset of Rd and T = [0, tf ]. We propose to
use its marginal densities ft to evaluate locally
the distance of the optimized trajectory y w.r.t.
the set of real flights.

Figure 1: Illustration of the marginal likelihoods.

Up to a certain continuous scaling map
ψ : L1(E,R+)× R→ [0; 1],

we define the mean marginal likelihood
(MML) as the average over t of the marginal
densities ft evaluated on the points of y:

MML(Z,y) = 1
tf

∫ tf

0
ψ[ft,y(t)]dt.

Possible scalings are the normalized density [3]

ψ[ft,y(t)] := y(t)
max
z∈E

ft(z)
,

and the confidence level (figure 2)
ψ[ft,y(t)] := P (ft(Zt) ≤ ft(y(t))) .

Figure 2: Confidence level for a bimodal distribution

Marginal Likelihood Estimation

In practice, the m trajectories are sampled at
variable discrete times:
T D := {(trj, zrj)} 1≤j≤n

1≤r≤m
⊂ T× E, zrj := zr(trj),

Y := {(t̃j, yj)}ñj=1 ⊂ T× E, yj := y(t̃j).
Hence, we approximate the MML using a Rie-
mann sum which aggregates consistent estima-
tors f̂mt̃j of the marginal densities ft̃j:

EMMLm(T D,Y) := 1
tf

ñ∑
j=1

ψ[f̂mt̃j , yj]∆t̃j.

Marginal density estimation can be done by
uniformly partitioning the space of times T into
bins and building standard density estimators
using the data points whose sampling times fall
in each bin (figure 3).

Figure 3: Illustration of the marginal density estimation.

Figure 4: Heatmap of the estimated confidence levels
using an adaptive kernel estimator to approximate the
marginal likelihoods.

Numerical simulations indicate that the dis-
criminative power of the MML surpasses well-
established techniques, such as functional-PCA
[4] and least-squares conditional density estima-
tion [5] in our dataset:

Table 1: Average and standard deviation of the likelihood
scores obtained using the kernel-MML, GMM-FPCA and
integrated LS-CDE for 50 real flights (Real), 50 optimized
flights with operational constraints (Opt1 ) and 50 opti-
mized flights without constraints (Opt2 ).

Var. Estimated Likelihoods
Real Opt1 Opt2

MML 0.63 ± 0.07 0.43 ± 0.08 0.13 ± 0.02
FPCA 0.16 ± 0.12 6.4e-03 ± 3.8e-03 3.6e-03 ± 5.4e-03
LS-CDE 0.77 ± 0.05 0.68 ± 0.04 0.49 ± 0.06

Optimal Control Penalization

The local scores obtained by this method can
be used not only to assess the optimization so-
lutions, but also to penalize the optimization
itself:

min
(x,u)∈X×U

∫ tf

0
C(t,u(t),x(t))dt− λMML(Z,x),

s.t.


ẋ(t) = ĝ(t,u(t),x(t)), for a.e. t ∈ [0, tf ],
Φ(x(0),x(tf)) ∈ KΦ,
cj(t,u(t),x(t)) ≤ 0, j = 1, . . . , nc.

Figure 5: Example of optimized flight with different MML-
penalty weights λ.

Figure 6: Average over 20 flights of the fuel consumption
and MML score (called acceptability here) of optimized
trajectories with varying MML-penalty weight λ.
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