Quantifying the Closeness to a Set of Random Curves via the Mean Marginal Likelihood

C. Rommel^{1,2,3}, J. F. Bonnans^{1,2}, B. Gregorutti³, P. Martinon^{1,2}

CMAP Ecole Polytechnique¹ - INRIA² - Safety Line³

Motivation: Trajectory Optimization

Aircraft trajectory optimization is a problem that has been extensively studied by the mathematical community, with applications for example in fuel consumption, flight time and noise reduction, as well as in collision avoidance. More recently, a particular framework has been considered in which the aircraft dynamics have been estimated from previous flights data [1, 2]. This setting raises the question of whether the optimized trajectory does not deviate too much from the validity region of the dynamics model, which corresponds to the area occupied by the data used to build it. Moreover, the simulated trajectory is usually wanted in practice to "seem" real" for better acceptance by the pilots and Air Traffic Control. These questions may both be addressed by quantifying the closeness between the optimization solution and the set of real flights used to identify the model.

Marginal Likelihood Estimation

In practice, the m trajectories are sampled at variable discrete times:

$$\mathcal{T}^{D} := \{(t_{j}^{r}, z_{j}^{r})\}_{\substack{1 \leq j \leq n \\ 1 \leq r \leq m}} \subset \mathbb{T} \times E, \quad z_{j}^{r} := \boldsymbol{z}^{r}(t_{j}^{r}), \\ \mathcal{Y} := \{(\tilde{t}_{j}, y_{j})\}_{j=1}^{\tilde{n}} \subset \mathbb{T} \times E, \qquad y_{j} := \boldsymbol{y}(\tilde{t}_{j}). \\ \text{Hence, we approximate the MML using a Riemann sum which aggregates consistent estimators $\hat{f}_{\tilde{t}_{j}}^{m}$ of the marginal densities $f_{\tilde{t}_{j}}$:
$$\overline{\mathrm{EMML}_{m}(\mathcal{T}^{D}, \mathcal{Y})} := \frac{1}{t_{f}} \sum_{j=1}^{\tilde{n}} \psi[\hat{f}_{\tilde{t}_{j}}^{m}, y_{j}] \Delta \tilde{t}_{j}.$$$$

Optimal Control Penalization

The local scores obtained by this method can be used not only to assess the optimization solutions, but also to penalize the optimization itself:

 $\min_{(\boldsymbol{x},\boldsymbol{u})\in\mathbb{X}\times\mathbb{U}}\int_{0}^{t_{f}}C(t,\boldsymbol{u}(t),\boldsymbol{x}(t))dt - \lambda \operatorname{MML}(Z,\boldsymbol{x}),$ $\begin{pmatrix} \dot{\boldsymbol{x}}(t) = \hat{g}(t,\boldsymbol{u}(t),\boldsymbol{x}(t)), & \text{for a.e. } t \in [0,t_{f}], \\ \boldsymbol{x}(t) = \boldsymbol{x}(t,\boldsymbol{u}(t),\boldsymbol{x}(t)), & \text{for a.e. } t \in [0,t_{f}], \end{cases}$

Mean Marginal Likelihood

We suppose that the real flights are observations of the same *functional random variable* $Z = (Z_t)$ valued in $\mathcal{C}(\mathbb{T}, E)$, with E compact subset of \mathbb{R}^d and $\mathbb{T} = [0, t_f]$. We propose to Marginal density estimation can be done by uniformly partitioning the space of times \mathbb{T} into *bins* and building standard density estimators using the data points whose sampling times fall in each bin (figure 3).

Figure 3: Illustration of the marginal density estimation.

s.t. $\begin{cases} \Phi(\boldsymbol{x}(0), \boldsymbol{x}(t_f)) \in K_{\Phi}, \\ c_j(t, \boldsymbol{u}(t), \boldsymbol{x}(t)) \leq 0, \quad j = 1, \dots, n_c. \end{cases}$

Figure 5: Example of optimized flight with different MML-penalty weights λ .

use its marginal densities f_t to evaluate locally the distance of the optimized trajectory \boldsymbol{y} w.r.t. the set of real flights.

Figure 1: Illustration of the marginal likelihoods.

Figure 4: Heatmap of the estimated confidence levels using an adaptive kernel estimator to approximate the marginal likelihoods.

Numerical simulations indicate that the discriminative power of the MML surpasses wellestablished techniques, such as functional-PCA [4] and least-squares conditional density estimation [5] in our dataset: Figure 6: Average over 20 flights of the fuel consumption and MML score (called *acceptability* here) of optimized trajectories with varying MML-penalty weight λ .

References

 C. Rommel, J. F. Bonnans, B Gregorutti, and P. Martinon. Aircraft dynamics identification for optimal control. In *Proceedings of EUCASS*, 2017.
C. Rommel, J. F. Bonnans, B Gregorutti, and P. Martinon. Block sparse linear models for learning structured dynamical systems in aeronautics. HAL report hal-01816400, 2018.

Possible scalings are the normalized density [3] $\psi[f_t, \boldsymbol{y}(t)] := \frac{\boldsymbol{y}(t)}{\max_{z \in E} f_t(z)},$ and the confidence level (figure 2) $\psi[f_t, \boldsymbol{y}(t)] := \mathbb{P}\left(f_t(Z_t) \leq f_t(\boldsymbol{y}(t))\right).$

Figure 2: Confidence level for a bimodal distribution

Table 1: Average and standard deviation of the likelihood scores obtained using the kernel-MML, GMM-FPCA and integrated LS-CDE for 50 real flights (*Real*), 50 optimized flights with operational constraints (*Opt1*) and 50 optimized mized flights without constraints (*Opt2*).

VAR.	Estimated Likelihoods		
	Real	Opt1	Opt2
MML	0.63 ± 0.07	0.43 ± 0.08	0.13 ± 0.02
FPCA	0.16 ± 0.12	$6.4\text{E-}03 \pm 3.8\text{E-}03$	$3.6 \text{E-}03 \pm 5.4 \text{E-}03$
LS-CDE	0.77 ± 0.05	0.68 ± 0.04	0.49 ± 0.06

[3] C. Rommel, J. F. Bonnans, B Gregorutti, andP. Martinon. Quantifying the closeness to a set of random curves via the mean marginal likelihood.HAL report hal-01816407, 2018.

[4] J. O. Ramsay and B. W. Silverman. *Applied* functional data analysis: methods and case studies. Springer, 2007.

[5] M. Sugiyama et al. Conditional density estimation via least-squares density ratio estimation. In *Proceedings of the Thirteenth AISTAT Conference*, 2010.

