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Motivation

20 000 airplanes — 80 000 flights per day,

Should double until 2033,

Responsible for 3% of CO2 emissions,

Accounts for 30% of operational cost for an airline,

Rectilinear climb trajectories at full thrust.
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Optimal Control Problem

min
(x,u)∈X×U

∫ tf

0
C (t,u(t), x(t))dt,

s.t.


ẋ = g(t,u, x), for a.e. t ∈ [0, tf ],
Φ(x(0), x(tf )) ∈ KΦ,
u(t) ∈ Uad , x(t) ∈ Xad , for a.e. t ∈ [0, tf ],
c(u(t), x(t)) ≤ 0, for all t ∈ [0, tf ].

(OCP)
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Dynamics are learned from QAR data

See e.g. [Rommel et al., 2017a] and [Rommel et al., 2017b]

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 4 / 30



Dynamics are learned from QAR data

See e.g. [Rommel et al., 2017a] and [Rommel et al., 2017b]

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 4 / 30



Dynamics are learned from QAR data

See e.g. [Rommel et al., 2017a] and [Rommel et al., 2017b]

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 4 / 30



Dynamics are learned from QAR data

See e.g. [Rommel et al., 2017a] and [Rommel et al., 2017b]

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 4 / 30



Trajectory acceptability

min
(x,u)∈X×U

∫ tf

0
C (t,u(t), x(t))dt,

s.t.


ẋ = ĝ(t,u, x), for a.e. t ∈ [0, tf ],
Φ(x(0), x(tf )) ∈ KΦ,
u(t) ∈ Uad , x(t) ∈ Xad , for a.e. t ∈ [0, tf ],
c(u(t), x(t)) ≤ 0, for all t ∈ [0, tf ].

(OCP)

⇒ ẑ = (x̂ , û) solution of (OCP).

Is ẑ inside the validity region of the dynamics model ĝ ?

Does it look like a real aicraft trajectory ?
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ẋ = ĝ(t,u, x), for a.e. t ∈ [0, tf ],
Φ(x(0), x(tf )) ∈ KΦ,
u(t) ∈ Uad , x(t) ∈ Xad , for a.e. t ∈ [0, tf ],
c(u(t), x(t)) ≤ 0, for all t ∈ [0, tf ].

(OCP)
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Does it look like a real aicraft trajectory ?

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 5 / 30



Trajectory acceptability

Pilots acceptance Air Traffic Control1

How can we quantify the closeness from the optimized trajectory to
the set of real flights?

1NATS UK air traffic control
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Likelihood

Let X be a random variable following an absolutely continuous probability
distribution with density function f depending on a parameter θ. Then the
function

L(θ|x) = fθ(x) (1)

considered as a function of θ, is the likelihood function of theta, given the
outcome x of X .

In our case:

the optimized trajectory
plays the role of θ,

the set of real flights plays
the role of x ,

0Picture source: wikipedia, P-Value, author: Repapetilto CC.
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How to apply this to functional data?
Assumption: We suppose that the real flights are observations of the
same functional random variable Z = (Zt) valued in C(T,E ), with E
compact subset of Rd and T = [0, tf ].

Problem: Computation of probability densities in infinite dimensional
space is untractable...

Standard approach FDA: use FPCA to decompose the data in a small
number of coefficients
Or: we can aggregate the marginal densities
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Why does it make sense for this type of data?

Likely values of flight variables during climb are strongly dependent on the
altitude
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How do we aggregate the marginal
likelihoods?

ft marginal density of Z , i.e. probability density function of Zt ,

y new trajectory,

ft(y(t)) marginal likelihood of y at t, i.e. likelihood of observing
Zt = y(t).
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ft marginal density of Z , i.e. probability density function of Zt ,

y new trajectory,
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Why not average over time ?...

1

tf

∫ tf

0
ft(y(t))dt

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 10 / 30



How do we aggregate the marginal
likelihoods?

ft marginal density of Z , i.e. probability density function of Zt ,

y new trajectory,

ft(y(t)) marginal likelihood of y at t, i.e. likelihood of observing
Zt = y(t).

Why not average over time ?...

1

tf

∫ tf

0
ft(y(t))dt

Marginal densities may have really different shapes

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 10 / 30



How do we aggregate the marginal
likelihoods?

ft marginal density of Z , i.e. probability density function of Zt ,

y new trajectory,

ft(y(t)) marginal likelihood of y at t, i.e. likelihood of observing
Zt = y(t).

Mean marginal likelihood [Rommel et al., 2018]

MML(Z , y) =
1

tf

∫ tf

0
ψ[ft , y(t)]dt,

where ψ : L1(E ,R+)× R→ [0; 1] is a continuous scaling map.
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How do we aggregate the marginal
likelihoods?
Possible scalings are the normalized density

ψ[ft , y(t)] :=
y(t)

max
z∈E

ft(z)
,

or the confidence level

ψ[ft , y(t)] := P (ft(Zt) ≤ ft(y(t))) .
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How do we deal with sampled curves?

In practice, the m trajectories are sampled at variable discrete times:

T D := {(trj , z rj )} 1≤j≤n
1≤r≤m

⊂ T× E , z rj := z
r (trj ),

Y := {(t̃j , yj)}ñj=1 ⊂ T× E , yj := y(t̃j).

Hence, we approximate the MML using a Riemann sum which aggregates
consistent estimators f̂ m

t̃j
of the marginal densities ft̃j :

EMMLm(T D ,Y) :=
1

tf

ñ∑
j=1

ψ[f̂ mt̃j , yj ]∆t̃j .
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How can we estimate marginal densities?

Suppose that sampling times {trj : j = 1, . . . , n; r = 1, . . . ,m} are
i.i.d. sampled from r.v. T , indep. Z ;

ft is the density of Zt = (ZT |T = t) = (Y |X );

Our problem can be seen as a conditional probability density learning
problem with (X ,Y ) = (T ,ZT ).

⇒ We could apply SOA conditional density estimation techniques, such as
LS-CDE [Sugiyama et al., 2010],

⇒ Instead, we choose to use a fine partitioning of the time domain.
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Partition based marginal density estimation

Idea: to average in time the marginal densities over small bins by applying
classical multivariate density estimation techniques to each subset.
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Consistency

Assumtion 1 - Positive time density

ν ∈ L∞(E ,R+) density function of T , s.t.

ν+ := ess sup
t∈T

ν(t) <∞, ν− := ess inf
t∈T

ν(t) > 0.

Assumtion 2 - Lipschitz in time

Function (t, z) ∈ T× E 7→ ft(z) is continuous and

|ft1(z)− ft2(z)| ≤ L|t1 − t2|, L > 0.

Assumption 3 - Shrinking bins

The homogeneous partition {Bm
` }

qm
`=1 of [0; tf ], with binsize bm, is s.t.

lim
m→∞

bm = 0, lim
m→∞

mbm =∞.
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Consistency

Assumption 4 - i.i.d. consistency

S = {(zk)Nk=1 ∈ EN : N ∈ N∗} set of finite sequences,

Θ : S → L1(E ,R+) multivariate density estimation statistic,

G arbitrary family of probability density functions on E , ρ ∈ G,

SN
ρ i.i.d sample of size N drawn from ρ valued in S.

The estimator obtained by applying Θ to SN
ρ , denoted by

ρ̂N := Θ[SN
ρ ] ∈ L1(E ,R+),

is a (pointwise) consistent density estimator, uniformly in ρ:

For all z ∈ E , ε > 0, α1 > 0, there is Nε,α1 > 0 such that, for any ρ ∈ G,

N ≥ Nε,α1 ⇒ P
(∣∣∣ρ̂N(z)− ρ(z)

∣∣∣ < ε
)
> 1− α1.
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Consistency

We denote by:

`m(t) :=
⌈

t
bm

⌉
maps time to index of bin containing it;

f̂ m`m(t) := Θ[T m
`m(t)] estimator trained using subset of data points T m

`m(t)
whose sampling times fall in the bin containing t;

Theorem 1 - [Rommel et al., 2018]

Under assumptions 1 to 4, for any z ∈ E and t ∈ T, f̂ m`m(t)(z) consistently

approximates the marginal density ft(z) as the number of curves m grows:

∀ε > 0, lim
m→∞

P
(
|f̂ m`m(t)(z)− ft(z)| < ε

)
= 1.
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Marginal density estimation results
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How good is it compared to other methods?

Training set of m = 424 flights ' 334 531 point observations,

Test set of 150 flights

= 50 real flights (Real), 50 optimized flights
with operational constraints (Opt1) and 50 optimized flights without
constraints (Opt2);

Discrimination power comparison with (gmm-)FPCA and (integrated)
LS-CDE:

Var. Estimated Likelihoods

Real Opt1 Opt2
MML 0.63 ± 0.07 0.43 ± 0.08 0.13 ± 0.02
FPCA 0.16 ± 0.12 6.4e-03 ± 3.8e-03 3.6e-03 ± 5.4e-03
LS-CDE 0.77 ± 0.05 0.68 ± 0.04 0.49 ± 0.06

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 21 / 30



How good is it compared to other methods?

Training set of m = 424 flights ' 334 531 point observations,

Test set of 150 flights

= 50 real flights (Real), 50 optimized flights
with operational constraints (Opt1) and 50 optimized flights without
constraints (Opt2);

Discrimination power comparison with (gmm-)FPCA and (integrated)
LS-CDE:

Var. Estimated Likelihoods

Real Opt1 Opt2
MML 0.63 ± 0.07 0.43 ± 0.08 0.13 ± 0.02
FPCA 0.16 ± 0.12 6.4e-03 ± 3.8e-03 3.6e-03 ± 5.4e-03
LS-CDE 0.77 ± 0.05 0.68 ± 0.04 0.49 ± 0.06

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 21 / 30



How good is it compared to other methods?

Training set of m = 424 flights ' 334 531 point observations,

Test set of 150 flights

= 50 real flights (Real), 50 optimized flights
with operational constraints (Opt1) and 50 optimized flights without
constraints (Opt2);

Discrimination power comparison with (gmm-)FPCA and (integrated)
LS-CDE:

Var. Estimated Likelihoods

Real Opt1 Opt2
MML 0.63 ± 0.07 0.43 ± 0.08 0.13 ± 0.02
FPCA 0.16 ± 0.12 6.4e-03 ± 3.8e-03 3.6e-03 ± 5.4e-03
LS-CDE 0.77 ± 0.05 0.68 ± 0.04 0.49 ± 0.06

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 21 / 30



How good is it compared to other methods?

Training set of m = 424 flights ' 334 531 point observations,

Test set of 150 flights = 50 real flights (Real), 50 optimized flights
with operational constraints (Opt1) and 50 optimized flights without
constraints (Opt2);

Discrimination power comparison with (gmm-)FPCA and (integrated)
LS-CDE:

Var. Estimated Likelihoods

Real Opt1 Opt2
MML 0.63 ± 0.07 0.43 ± 0.08 0.13 ± 0.02
FPCA 0.16 ± 0.12 6.4e-03 ± 3.8e-03 3.6e-03 ± 5.4e-03
LS-CDE 0.77 ± 0.05 0.68 ± 0.04 0.49 ± 0.06

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 21 / 30



How good is it compared to other methods?

Training set of m = 424 flights ' 334 531 point observations,

Test set of 150 flights = 50 real flights (Real), 50 optimized flights
with operational constraints (Opt1) and 50 optimized flights without
constraints (Opt2);

Discrimination power comparison with (gmm-)FPCA and (integrated)
LS-CDE:

Var. Estimated Likelihoods

Real Opt1 Opt2
MML 0.63 ± 0.07 0.43 ± 0.08 0.13 ± 0.02
FPCA 0.16 ± 0.12 6.4e-03 ± 3.8e-03 3.6e-03 ± 5.4e-03
LS-CDE 0.77 ± 0.05 0.68 ± 0.04 0.49 ± 0.06

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 21 / 30



How good is it compared to other methods?

Training set of m = 424 flights ' 334 531 point observations,

Test set of 150 flights = 50 real flights (Real), 50 optimized flights
with operational constraints (Opt1) and 50 optimized flights without
constraints (Opt2);

Discrimination power comparison with (gmm-)FPCA and (integrated)
LS-CDE:

Var. Estimated Likelihoods

Real Opt1 Opt2
MML 0.63 ± 0.07 0.43 ± 0.08 0.13 ± 0.02
FPCA 0.16 ± 0.12 6.4e-03 ± 3.8e-03 3.6e-03 ± 5.4e-03
LS-CDE 0.77 ± 0.05 0.68 ± 0.04 0.49 ± 0.06

(CMAP, INRIA, Safety Line) GMM Penalization for OCP ISMP - July 2nd 2018 21 / 30



MML penalty

The MML can be used not only to assess the optimization solutions, but
also to penalize the optimization itself:

min
(x,u)∈X×U

∫ tf

0
C (t,u(t), x(t))dt − λMML(Z , x),

s.t.


ẋ = g(t,u, x), for a.e. t ∈ [0, tf ],
Φ(x(0), x(tf )) ∈ KΦ,
u(t) ∈ Uad , x(t) ∈ Xad , for a.e. t ∈ [0, tf ],
c(u(t), x(t)) ≤ 0, for all t ∈ [0, tf ].

(OCP)

λ sets trade-off between a fuel minimization and a likelihood
maximization,

If (OCP) is solved using NLP techniques, parametric estimator of
MML is needed.
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Gaussian mixture model for marginal
densities

ft(z) =
K∑

k=1

wt,kφ(z , µt,k ,Σt,k),

K∑
k=1

wt,k = 1, wt,k ≥ 0,

φ(z , µ,Σ) :=
1√

(2π)d det Σ
e−

1
2

(z−µ)>Σ−1(z−µ).

Assuming that the number of components is known, the weights wt,k ,
means µt,k and covariance matrices Σt,k need to be estimated.
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Maximum likelihood parameters estimation

For K = 1, maximum likelihood estimates have closed form:

L(µt,1,Σt,1|z1, . . . , zN) =
N∏
i=1

1√
(2π)d det Σt,1

e−
1
2

(z−µt,1)>Σ−1
t,1 (z−µt,1)

θ̂ := (µ̂t,1, Σ̂t,1) = arg min
(µt,1,Σt,1)

N∑
i=1

(
log det Σt,1 + (zi − µt,1)>Σ−1

t,1(zi − µt,1)
)

µ̂t,1 =
1

N

N∑
i=1

zi , Σ̂t,1 =
1

N

N∑
i=1

(zi − µ̂t,1)(zi − µ̂t,1)>.
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EM Algorithm

Hidden random variable J valued on {1, . . . ,K},
If i th observation Ji = k , then zi was drawn from the kth component,
Group observations by component and compute (µ̂t,k , Σ̂t,k) with
K = 1 maximum likelihood formulas.

Expectation-Maximization - [Dempster et al., 1977]

Initialization: θ̂ = (ŵt,k , µ̂t,k , Σ̂t,k)Kk=1 = (w0
t,k , µ

0
t,k ,Σ

0
t,k)Kk=1,

Expectation: For k = 1, . . . ,K and i = 1, . . . ,N,

ŵt,k =
1

N

N∑
i=1

π̂k,i , π̂k,i := P(Ji = k |θ̂t ,Zh) =
µ̂t,kφ(zi , µ̂t,k , Σ̂t,k)∑N
j=1 ŵt,kφ(zj , µ̂t,k , Σ̂t,k)

.

Maximization:

µ̂t,k =

∑N
i=1 π̂k,izi∑N
i=1 π̂k,i

, Σ̂t,k =

∑N
i=1 π̂k,i (zi − µ̂t,k)(zi − µ̂t,k)>∑N

i=1 π̂k,i
.
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Penalty effect
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Consumption x Acceptability trade-off

Figure: Average over 20 flights of the fuel consumption and MML score (called
acceptability here) of optimized trajectories with varying MML-penalty weight λ.
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Conclusion

1 General probabilistic criterion for quantifying the closeness between a
curve and a set random trajectories,

2 Class of consistent plug-in estimators, based on “histogram” of
multivariate density estimators,

3 Applicable to the case of aircraft climb trajectories,

Competitive with other well-established SOA approaches,

4 Particular Gaussian mixture model implementation,

Showed that it can be used in optimal control problems to obtain
solutions close to optimal, and still realistic.

⇒ How could we automatically set the trade-off ?...
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