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MOTIVATION - OPTIMAL CONTROL

N x(t) = g(u(t), x(t)) + (1)
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MOTIVATION - OPTIMAL CONTROL

N x(t) = g(u(t), x(t)) + (1)

OprPTIMAL CONTROL PROBLEM

min /Otf Clu(t), x(b))dt,

(x,u)eXxU

_ R (OCP)
.t { x(t) = g(u(t), x(t)) +&(t), forae. tel0,t],

Other constraints...

Use of past data to learn how to control a system efficiently

“Model-based reinforcement learning” - [Recht, 2018]
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FLIGHT OPTIMIZATION
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FLIGHT OPTIMIZATION
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DYNAMICS ARE LEARNED FROM QAR DATA
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DYNAMICS ARE LEARNED FROM QAR DATA

Black box
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DYNAMICS ARE LEARNED FROM QAR DATA
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TRAJECTORY ACCEPTABILITY

min / C(u (t))dt,
(x,u)eXxU

ot { x(t) = g(u(t), x(t)) = e(t), fora.e. te]|0,tf],
“" | Other constraints...

(OCP)
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= Z = (X, i) solution of (OCP).
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TRAJECTORY ACCEPTABILITY

min / C(u (t))dt,
(x,u)eXxU

ot { x(t) = g(u(t), x(t)) = e(t), fora.e. te]|0,tf],
Other constraints...

(OCP)

= Z = (X, i) solution of (OCP).

Is Z inside the validity region of the dynamics model g ?
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TRAJECTORY ACCEPTABILITY

min / C(u (t))dt,
(x,u)eXxU

ot { x(t) = g(u(t), x(t)) = e(t), fora.e. te]|0,tf],
Other constraints...

(OCP)

= Z = (X, i) solution of (OCP).
Is Z inside the validity region of the dynamics model g ?

Does it look like a real trajectory ?
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TRAJECTORY ACCEPTABILITY
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How can we quantify the closeness from the optimized trajectory to
the set of real flights?

INATS UK air traffic control
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LIKELIHOOD

OXNf.@*,

o x: observation of X,

o Likelihood function of 0, given x:

L(0]x) = f5(x)

OPicture source: wikipedia, P-Value, author: Repapetilto:CC.5
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LIKELIHOOD
Qo X ~ fé*,
o x: observation of X,

o Likelihood function of 0, given x:
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LIKELIHOOD
o X ~ fox,

o x: observation of X,

o Likelihood function of 0, given x:

L(0]x) = fo(x)-

Most likely observation
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HOwW TO APPLY THIS TO FUNCTIONAL DATA?

Assumption: We suppose that the real flights are observations of the

same functional random variable Z = (Z;) valued in C(T, E), with E
compact subset of RY and T = [0, t¢].
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Assumption: We suppose that the real flights are observations of the
same functional random variable Z = (Z;) valued in C(T, E), with E
compact subset of RY and T = [0, t¢].

Problem: Computation of probability densities in infinite dimensional
space is untractable...

o Standard approach FDA: use FPCA to decompose the data in a small
number of coefficients

-1004 *
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HOwW TO APPLY THIS TO FUNCTIONAL DATA?

Assumption: We suppose that the real flights are observations of the
same functional random variable Z = (Z;) valued in C(T, E), with E
compact subset of RY and T = [0, t¢].

Problem: Computation of probability densities in infinite dimensional
space is untractable...

o Standard approach FDA: use FPCA to decompose the data in a small
number of coefficients
o Or: we can aggregate the marginal densities

Real flights
—— Simulated trajectory
—— Marginal density

2000 3000 4000 5000 6000 7000 8000 9000 10000
ALTITUDE h (m)
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How DO WE AGGREGATE THE MARGINAL
LIKELIHOODS?
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o f; marginal density of Z, i.e. probability density function of Z;,
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How DO WE AGGREGATE THE MARGINAL
LIKELIHOODS?

o f; marginal density of Z, i.e. probability density function of Z;,

o y new trajectory,
o f(y(t)) marginal likelihood of y at t, i.e. likelihood of observing

Why not average over time ?...

1 [
— [ fly(t))dt
tr Jo

(CMAP, INRIA, SAFETY LINE) MEAN MARGINAL LIKELIHOOD Aucust 28t 2018 9 /27



How DO WE AGGREGATE THE MARGINAL
LIKELIHOODS?

o f; marginal density of Z, i.e. probability density function of Z;,

o y new trajectory,
o f(y(t)) marginal likelihood of y at t, i.e. likelihood of observing

Why not average over time ?...
1 [
— [ fily(t))dt
tr Jo

Marginal densities may have really different shapes
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How DO WE AGGREGATE THE MARGINAL
LIKELIHOODS?

o f; marginal density of Z, i.e. probability density function of Z;,

o y new trajectory,
o fy(y(t)) marginal likelihood of y at t, i.e. likelihood of observing

MEAN MARGINAL LIKELIHOOD

MML(Z,y) = / Wlfey(D)dt,

where 9 : L}(E,Ry) x R — [0;1] is a continuous scaling map.
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How DO WE AGGREGATE THE MARGINAL

LIKELIHOODS?
Possible scalings are the normalized density
y(t)
fe,y(t)] .=
Tr[}[ l’ay( )] ma’z—(ﬂ(z)v
ze
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How DO WE AGGREGATE THE MARGINAL

LIKELIHOODS?
Possible scalings are the normalized density
y(t)
fe,y(t)] .=
Tr[}[ tay( )] malz_(ft(z)’
ze

or the confidence level

Ulfe, y(1)] =P (f(Z:) < fe(y(1))) .-

z=fil(z)

p(t ¥(t)): =P(fZ:) = f(¥(t)))

fly(t))

y(t) P~
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How DO WE DEAL WITH SAMPLED CURVES?
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How DO WE DEAL WITH SAMPLED CURVES?

In practice, the m trajectories are sampled at variable discrete times:

TP :={(t/,2])}1<j<n C T x E, z[ = 2'(t]),
1<r<m
Y :={(t,y)}}-1 CTxE, yi = y(%).
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How DO WE DEAL WITH SAMPLED CURVES?

In practice, the m trajectories are sampled at variable discrete times:

TP :={(t/,2])}1<j<n C T x E, z[ = 2'(t]),
1<r<m
Y :={(t,y)}}-1 CTxE, yi = y(%).

Hence, we approximate the MML using a Riemann sum which aggregates
consistent estimators ;" of the marginal densities fgj
J

1n o oo
EMMLR(T®, ) = = 3 wIf, ]G
j=1
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HOW CAN WE ESTIMATE MARGINAL DENSITIES?

o Suppose that sampling times {tj’ j=1,...,mr=1,...,m} are
i.i.d. sampled from r.v. T, indep. Z;
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o Our problem can be seen as a conditional probability density learning
problem with (X, Y) = (T, Z7).
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i.i.d. sampled from r.v. T, indep. Z;
o fpis the density of Z; = (Z7|T = t) = (Y|X);

o Our problem can be seen as a conditional probability density learning
problem with (X, Y) = (T, Z7).

= We could apply SOA conditional density estimation techniques, such as
LS-CDE [Sugiyama et al., 2010],
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HOW CAN WE ESTIMATE MARGINAL DENSITIES?

o Suppose that sampling times {tj’ j=1,...,mr=1,...,m} are
i.i.d. sampled from r.v. T, indep. Z;
o fpis the density of Z; = (Z7|T = t) = (Y|X);

o Our problem can be seen as a conditional probability density learning
problem with (X, Y) = (T, Z7).

= We could apply SOA conditional density estimation techniques, such as
LS-CDE [Sugiyama et al., 2010],

= Instead, we choose to use a fine partitioning of the time domain.
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PARTITION BASED MARGINAL DENSITY ESTIMATION
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PARTITION BASED MARGINAL DENSITY ESTIMATION

250

200

150 Flights data

---- Partitions
—— Density estimation

TRUE AIRSPEED V (m/s)

100

2000 3000 4000 5000 6000 7000 8000 9000 10000
ALTITUDE h (m)

Idea: to average in time the marginal densities over small bins by applying
classical multivariate density estimation techniques to each subset.
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CONSISTENCY

We denote by:
o ©:8 — LY(E,R,) multivariate density estimation statistic,
o 8= {(z))_; € EN: N € N*} set of finite sequences,
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CONSISTENCY

We denote by:
o ©:8 — LY(E,R,) multivariate density estimation statistic,
o 8= {(z))_; € EN: N € N*} set of finite sequences,

m the number of random curves;

©

©

T.™ subset of data points whose sampling times fall in the bin
containing t;
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CONSISTENCY

We denote by:
o ©:8 — LY(E,R,) multivariate density estimation statistic,
o 8= {(z))_; € EN: N € N*} set of finite sequences,

o m the number of random curves;

o 7,7 subset of data points whose sampling times fall in the bin
containing t;

o fm = O[T,;"] estimator trained using 7;".
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CONSISTENCY

ASSUMTION 1 - POSITIVE TIME DENSITY
v € L*(E,R.) density function of T, s.t.

vy = esssupv(t) < oo,
teT

v_ :=essinfv(t) >0
teT
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CONSISTENCY

ASSUMTION 1 - POSITIVE TIME DENSITY
v € L*(E,R.) density function of T, s.t.

vy = esssupv(t) < oo, v_ :=essinfv(t) >0
teT teT

ASSUMTION 2 - LIPSCHITZ IN TIME

Function (t,z) € T x E — f;(z) is continuous and

fe(2) — fi,(2)| < Lty — to],

L>0.
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CONSISTENCY

ASSUMTION 1 - POSITIVE TIME DENSITY
v € L*(E,R.) density function of T, s.t.

vy = esssupv(t) < oo, v_ :=essinfv(t) >0
teT teT

ASSUMTION 2 - LIPSCHITZ IN TIME

Function (t,z) € T x E — f;(z) is continuous and

fe(2) — fi,(2)| < Lty — to],

L>0.
ASSUMPTION 3 - SHRINKING BINS

lim b, =0,

m—o0

The homogeneous partition {B/"}7", of [0; t¢], with binsize by, is s.t.

lim mb, = oo
m—00
(CMAP, INRIA, SAFETY LINE)
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CONSISTENCY

ASSUMPTION 4 - I.I.D. CONSISTENCY
o G arbitrary family of probability density functions on E, p € G,
° S,ﬁv i.i.d sample of size N drawn from p valued in S.

The estimator obtained by applying © to 5%’,\’, denoted by
pN = o[s)] € L'(E,R4),
is a (pointwise) consistent density estimator, uniformly in p:

Forallze€ E,e > 0,01 > 0, there is N, o, > 0 such that, for any p € G,

N> Neo, = P (‘ﬁN(z) —p(z)’ <e)>1-a,
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CONSISTENCY

THEOREM 1 - [ROMMEL ET AL., 2018]

N

Under assumptions 1 to 4, forany z€ E and t € T, fe’,’n'(t)(z) consistently
approximates the marginal density f;(z) as the number of curves m grows:

Ve >0, lim P (mm(z) ~fi(2)] < 5) ~1

(CMAP, INRIA, SAFETY LINE) MEAN MARGINAL LIKELIHOOD
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CONSISTENCY

THEOREM 1 - [ROMMEL ET AL., 2018]

N

Under assumptions 1 to 4, forany z€ E and t € T, fe’,ﬂ(t)(z) consistently
approximates the marginal density f;(z) as the number of curves m grows:

Ve >0, lim P (mm(z) ~fi(2)] < 5) ~1

m—>00

Note that:

om—o00#N— oo,
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CONSISTENCY

THEOREM 1 - [ROMMEL ET AL., 2018]

N

Under assumptions 1 to 4, forany z€ E and t € T, fe’,ﬂ(t)(z) consistently
approximates the marginal density f;(z) as the number of curves m grows:

Ve >0, lim P (mm(z) ~fi(2)] < 5) ~1

m—>00

Note that:
om—o00#N— oo,

o Number of samples = random.

(CMAP, INRIA, SAFETY LINE) MEAN MARGINAL LIKELIHOOD Aucust 28t 2018 17 /27



MARGINAL DENSITY ESTIMATION RESULTS
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How GOOD IS IT COMPARED TO OTHER METHODS?
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How GOOD IS IT COMPARED TO OTHER METHODS?

o Training set of m = 424 flights ~ 334 531 point observations,
o Test set of 150 flights

Optimizgd flights
r Al
Real Opt2
(50) (50)
[N - J U - J
with operational without operational
constraints constraints

o Discrimination power comparison with (gmm-)FPCA and (integrated)
LS-CDE:

VAR. ESTIMATED LIKELIHOODS

REAL OrTl OpPT2
MML 0.63 £+ 0.07 0.43 + 0.08 0.13 £+ 0.02
FPCA 0.16 = 0.12 6.4E-03 + 3.86-03 3.6E-03 + 5.4E-03
LS-CDE 0.77 + 0.05 0.68 = 0.04 0.49 4+ 0.06
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MML PENALTY

The MML can be used not only to assess the optimization solutions, but
also to penalize the optimization itself:

min /f C(u(t), x(£))dt
0

(x,u)eXxU

; x(t) = g(u(t), x(t)) + (t), fora.e. te]0,ts],
54 Other constraints...

(OCP)
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MML PENALTY

The MML can be used not only to assess the optimization solutions, but
also to penalize the optimization itself:

tr
(x,uTei?ixU/o C(u(t),x(t))dt — A\MML(Z, x),

_ (OCP)
ot { x(t) = g(u(t), x(t)) +(t), forae. te]0,tf],

Other constraints...

o A\ sets trade-off between a fuel minimization and a likelihood
maximization,
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PENALTY EFFECT
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CONSUMPTION X ACCEPTABILITY TRADE-OFF
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FIGURE: Average over 20 flights of the fuel consumption and MML score (called
acceptability here) of optimized trajectories with varying MML-penalty weight A.
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CONCLUSION

@ General probabilistic criterion for quantifying the closeness between a
curve and a set random trajectories,

(CMAP, INRIA, SAFETY LINE) MEAN MARGINAL LIKELIHOOD Aucust 28t 2018 25 /27



CONCLUSION

@ General probabilistic criterion for quantifying the closeness between a
curve and a set random trajectories,

@ Class of consistent plug-in estimators, based on “histogram” of
multivariate density estimators,

(CMAP, INRIA, SAFETY LINE) MEAN MARGINAL LIKELIHOOD Aucust 28t 2018 25 /27



CONCLUSION

@ General probabilistic criterion for quantifying the closeness between a
curve and a set random trajectories,

@ Class of consistent plug-in estimators, based on “histogram” of
multivariate density estimators,
® Applicable to the case of aircraft climb trajectories,

(CMAP, INRIA, SAFETY LINE) MEAN MARGINAL LIKELIHOOD Aucust 28t 2018 25 /27



CONCLUSION

@ General probabilistic criterion for quantifying the closeness between a
curve and a set random trajectories,
@ Class of consistent plug-in estimators, based on “histogram” of
multivariate density estimators,
® Applicable to the case of aircraft climb trajectories,
o Competitive with other well-established SOA approaches,

(CMAP, INRIA, SAFETY LINE) MEAN MARGINAL LIKELIHOOD Aucust 28t 2018 25 /27



CONCLUSION

@ General probabilistic criterion for quantifying the closeness between a
curve and a set random trajectories,

@ Class of consistent plug-in estimators, based on “histogram” of
multivariate density estimators,

® Applicable to the case of aircraft climb trajectories,

o Competitive with other well-established SOA approaches,

@ Showed that it can be used in optimal control problems to obtain

solutions close to optimal, and still realistic.
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THANK YOU FOR YOUR ATTENTION
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