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phase...
Mostly rectilinear trajectories at full
thrust,
Thousands of variables recorded every
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TRAJECTORY OPTIMIZATION

Dynamics:

ẋ(t) = g(u(t), x(t))+ ε(t)

Optimization objective:
∫ tf

0 C (u(t), x(t))dt ⇐= , ,

Flight constraints:
Φ(x(0), x(tf )) ∈ KΦ Initial and final conditions
u(t) ∈ Uad , x(t) ∈ Xad , Flight domain
c(u(t), x(t)) ≤ 0, Operational path constraints
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ẋ(t) = g(u(t), x(t))+ ε(t)

Optimization objective:
∫ tf

0 C (u(t), x(t))dt

⇐= , ,

Flight constraints:
Φ(x(0), x(tf )) ∈ KΦ Initial and final conditions
u(t) ∈ Uad , x(t) ∈ Xad , Flight domain
c(u(t), x(t)) ≤ 0, Operational path constraints



7/49

TRAJECTORY OPTIMIZATION

Dynamics:
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TRAJECTORY OPTIMIZATION

Optimal Control Problem

min
(x,u)∈X×U

∫ tf

0
C (u(t), x(t))dt,

s.t.


ẋ(t) = g(u(t), x(t)) + ε(t), a.e. t ∈ [0, tf ],
Φ(x(0), x(tf )) ∈ KΦ,
u(t) ∈ Uad , x(t) ∈ Xad , a.e. t ∈ [0, tf ],
c(u(t), x(t)) ≤ 0, a.e. t ∈ [0, tf ].

(OCP)

System Identification

Black box
QAR data
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TRAJECTORY OPTIMIZATION

Approximate Optimal Control Problem

min
(x,u)∈X×U

∫ tf

0
C (u(t), x(t))dt,

s.t.


ẋ(t) = ĝ(u(t), x(t)),+ε(t) a.e. t ∈ [0, tf ],
Φ(x(0), x(tf )) ∈ KΦ,
u(t) ∈ Uad , x(t) ∈ Xad , a.e. t ∈ [0, tf ],
c(u(t), x(t)) ≤ 0, a.e. t ∈ [0, tf ].

(A OCP)

System Identification

Black box
QAR data
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1 Context - Chapter 1

2 System Identification - Chapter 4

3 Trajectory Acceptability - Chapters 5 and 6
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Controls: u = (α,N1)
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ḣ = V sin γ + Ẇz

V̇ =
T (u, x) cos α−D(u, x)−mg sin γ−mẆxv

m

γ̇ =
(T (u, x) sin α + L(u, x)) cos µ−mg cos γ−mẆzv

mV

ṁ = − T (u, x)

Isp(u, x)
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PHYSICAL MODELS OF NESTED FUNCTIONS


T function of (N1,M, ρ) = ϕT (x ,u)

D function of (q,M, α) = ϕD(x ,u)

L function of (q,M, α) = ϕL(x ,u)

Isp function of (SAT ,M, h) = ϕIsp(x ,u)

XT = N1



1
ρ
M
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...


,XD = XL = q
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STATE-OF-THE-ART - [JATEGAONKAR, 2006]

Output-Error Method

Filter-Error Method

}
Less scalable to many trajectories

Equation-Error Method Ex: (Nonlinear) Least-Squares

min
θ

N

∑
i=1

∥∥∥Y (ui , xi , ẋi )− G (ui , xi , ẋi ,θ)
∥∥∥2

2
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LEVERAGING THE DYNAMICS STRUCTURE

ḣ = V sin γ

V̇ =
T (u, x ,θT ) cos α−D(u, x ,θD)−mg sin γ

m

γ̇ =
T (u, x ,θT ) sin α + L(u, x ,θL)−mg cos γ

mV

ṁ = − T (u, x ,θT )

Isp(u, x ,θIsp)

Nonlinear in states and controls

Nonlinear in parameters
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LEVERAGING THE DYNAMICS STRUCTURE
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0 = T (u, x ,θT ) + ṁIsp(u, x ,θIsp)
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LEVERAGING THE DYNAMICS STRUCTURE

ḣ = V sin γ

mV̇ +mg sin γ = (XT · θT ) cos α− XD · θD + ε1

mV γ̇ +mg cos γ = (XT · θT ) sin α + XL · θL + ε2

0 = XT · θT + ṁ(XIsp · θIsp) + ε3

mV γ̇ +mg cos γ︸ ︷︷ ︸
Y (u,x ,ẋ)

= (XT · θT ) sin α + XL · θL︸ ︷︷ ︸
G (u,x ,ẋ ,θ)

+ε2

Nonlinear in states and controls

Nonlinear in parameters → Linear in parameters

Structured

Coupling

 Multi-task Learning
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= (XT · θT ) sin α + XL · θL︸ ︷︷ ︸
G (u,x ,ẋ ,θ)
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LEVERAGING THE DYNAMICS STRUCTURE

ḣ = V sin γ

Y1 = XT1 · θT − XD · θD + ε1

Y2 = XT2 · θT + XL · θL + ε2

Y3 = XT · θT + XIspm · θIsp + ε3

Nonlinear in states and controls

Nonlinear in parameters → Linear in parameters

Structured

Coupling  Multi-task Learning
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MULTI-TASK REGRESSION

Aircraft:


Y1 = XT1 · θT − XD · θD + ε1

Y2 = XT2 · θT + XL · θL + ε2

Y3 = XT · θT + XIspm · θIsp + ε3

General:

Y1 = Xc,1 · θc + X1 · θ1 + ε1

Y2 = Xc,2 · θc + X2 · θ2 + ε2
...

...

YK = Xc,K · θc + XK · θK + εK
Coupling parameters , Task specific parameters

Many other examples:

Giant squid neurons [FitzHugh, 1961, Nagumo et al., 1962],

Susceptible-infectious-recovered models [Anderson and May, 1992],

Mechanical systems,...
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Y2 = Xc,2 · θc + X2 · θ2 + ε2
...

...

YK = Xc,K · θc + XK · θK + εK
Coupling parameters , Task specific parameters

Multi-task Linear Least-Squares: Block-sparse Coupling Structure

min
θ

N

∑
i=1

∥∥∥∥∥∥∥∥∥∥∥

 Y1,i
...

YK ,i

−


X>c,1,i X>1,i 0 0 . . . 0

X>c,2,i 0 X>2,i 0 . . . 0
... 0 0

. . . 0 0

X>c,K ,i 0 0 . . . 0 X>K ,i




θc
θ1
...
θK


∥∥∥∥∥∥∥∥∥∥∥

2
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...

YK = Xc,K · θc + XK · θK + εK
Coupling parameters , Task specific parameters

Multi-task Linear Least-Squares:

min
θ

N

∑
i=1

‖Yi − Xiθ‖2
2

with θ = (θc ,θ1, . . . ,θK ) ∈ Rp, p = dc + ∑K
k=1 dk ,

Yi ∈ RK and Xi ∈ RK×p.
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FEATURE SELECTION

Our model:

T =N1(θT ,1 + θT ,2ρ + θT ,3M + θT ,4ρ2 + θT ,5ρM + θT ,6M
2+

θT ,7ρ3 + θT ,8ρ2M + θT ,9ρM2 + θT ,10M
3 + θT ,11ρ4+

θT ,12ρ3M + θT ,13ρ2M2 + θT ,14ρM3 + θT ,15M
4).

Mattingly’s model [Mattingly et al., 1992]:

T = N1(θT ,1ρ + θT ,2ρM3).
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FEATURE SELECTION

Our (sparse) model:

T =N1(θT ,1 + θT ,2ρ + θT ,3M + θT ,4ρ2 + θT ,5ρM + θT ,6M
2+

θT ,7ρ3 + θT ,8ρ2M + θT ,9ρM2 + θT ,10M
3 + θT ,11ρ4+

θT ,12ρ3M + θT ,13ρ2M2 + θT ,14ρM3 + θT ,15M
4).

Mattingly’s model [Mattingly et al., 1992]:

T = N1(θT ,1ρ + θT ,2ρM3).

Sparse models are:

Less susceptible to overfitting,

More compliant with physical models,

More interpretable,

Lighter/Faster.
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BLOCK-SPARSE LASSO

Lasso [Tibshirani, 1994]: {(Xi ,Yi )}Ni=1 ⊂ Rd+1 i.i.d sample,

min
θ

N

∑
i=1

(Yi − Xi · θ)2 + λ‖θ‖1.

FIGURE: 1Sparsity induced by L1 norm in Lasso.

Source : Wikipedia, Lasso(statistics)
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BLOCK-SPARSE LASSO

Block-sparse structure preserved

min
θ

K

∑
k=1

N

∑
i=1

(Yk,i − Xc,k,i · θc − Xk,i · θk) 2 +λc‖θc‖1 +
K

∑
k=1

λk‖θk‖1
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Block-sparse structure preserved  Equivalent to Lasso problem

min
θ

N

∑
i=1

‖Yi − Xiθ‖2
2 + λc‖θ‖1

with θ = (θc , λ1
λc
θ1, . . . , λK

λc
θK ) ∈ Rp, p = dc + ∑K

k=1 dk ,

Yi ∈ RK and Xi ∈ RK×p,
In practice, we choose λk = λc , for all k = 1, . . . , 3 and

Xi =

 X>T1,i −X>D,i 0 0

X>T2,i 0 X>L,i 0

X>T ,i 0 0 X>Ispm,i

 , Yi =

 Y1,i

Y2,i

Y3,i
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BOOTSTRAP IMPLEMENTATION

High correlations between features...

⇒ Inconsistent selections via the lasso !

Bolasso - Bach [2008]

Require:
training data T = {(Xi ,Yi )}Ni=1 ⊂ RK×(K+1) ×RK ,
number of bootstrap replicates b,
L1 penalty parameter λc ,

1: for k = 1 to b do
2: Generate bootstrap sample Tk ,
3: Compute Block sparse Lasso estimate θ̂k from Tk ,
4: Compute support Jk = {j , θ̂k

j 6= 0},
5: end for
6: Compute intersection J =

⋂b
k=1 Jk ,

7: Compute θ̂J from selected features using Least-Squares.

Consistency even under high correlations proved in Bach [2008],

Efficient implementations exist: LARS [Efron et al., 2004].
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PROBLEM WITH INTRA-GROUP CORRELATIONS

min
θ

N

∑
i=1

‖Yi − Xiθ‖2
2 + λc‖θ‖1 ⇒ θ̂T = θ̂Isp = 0!


Y1 = XT1 · θT − XD · θD +ε1

Y2 = XT2 · θT + XL · θL +ε2

0 = XT · θT + XIspm · θIsp +ε3
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PROBLEM WITH INTRA-GROUP CORRELATIONS

FIGURE: Features correlations
higher than 0.9 in absolute
value in white.

⇒ θ 7→ ∑N
i=1 ‖Yi − Xiθ‖2

2 not
injective...
Ill-posed problem !
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PROBLEM WITH INTRA-GROUP CORRELATIONS


Y1 = XT1 · θT − XD · θD +ε1

Y2 = XT2 · θT + XL · θL +ε2

0 = XT · θT + XIspm · θIsp +ε3

λt Ĩsp = λtXIsp · θIsp +ε4

min
θ

N

∑
i=1

‖Yi − Xiθ‖2
2 + λc‖θ‖1

Prior model Ĩsp from Roux [2005]  Ĩsp,i = Ĩsp(ui , xi ), i = 1, . . . ,N.
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0 = XT · θT + XIspm · θIsp +ε3√
λt Ĩsp =

√
λtXIsp · θIsp +ε4

min
θ

N

∑
i=1

‖Ỹi − X̃iθ‖2
2 + λc‖θ‖1

Ỹi =


Y1,i

Y2,i

0√
λt Ĩsp,i

 , X̃i =


X>T1,i −X>D,i 0 0

X>T2,i 0 X>L,i 0

X>T ,i 0 0 X>Ispm,i

0 0 0
√

λtX
>
Isp,i
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FEATURE SELECTION RESULTS

25 different B737-800,

10 471 flights = 8 261 619 observations,

Block sparse Bolasso used for T ,D, L and Isp,

We expect similar model structures,
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FEATURE SELECTION RESULTS

Feature selection results for the thrust, drag, lift and specific impulse
models.
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ACCURACY OF DYNAMICS PREDICTIONS
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REALISM OF HIDDEN ELEMENTS
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FLIGHT RESIMULATION

Last assessment criterion = static;

Does not incorporate the fact that the observations are time
dependent;

Does not take into account the goal of optimally controlling
the aircraft system.

Another possible dynamic criterion:

min
(x ,u)

∫ tn

t0

(
‖u(t)− utest(t)‖2

u + ‖x(t)− xtest(t)‖2
x

)
dt

s.t. ẋ(t) = g(x(t),u(t), θ̂),

where ‖ · ‖u , ‖ · ‖x denote scaling norms.

For practical applications: t ↔ h
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FLIGHT RESIMULATION
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FLIGHT RESIMULATION

FIGURE: Distribution of the off-sample simulation error and boxplot of
the optimization number of iterations and CPU time.
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SYSTEM IDENTIFICATION CONCLUSION

1 Proposed Equation-Error Method approaches which extend to
the System Identification framework well-known supervised
learning techniques (Lasso, Ridge, bootstrap,...),

2 Applicable to large amounts of data,

3 Block-sparse estimators are proved to lead to consistent
structured feature selection,

4 Can be efficiently trained using LARS algorithm as they are
equivalent to successive Lasso problems,

5 Compared to regular Nonlinear Least-Squares:

Similar performances in accuracy and training time,
No initialization required,
Light, interpretable and compact data-dependent models
(more than 50% compression),
Faster convergence when applied to control problems.
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TRAJECTORY ACCEPTABILITY

min
(x,u)∈X×U

∫ tf

0
C (u(t), x(t))dt,

s.t.
{

ẋ(t) = ĝ(u(t), x(t)), a.e. t ∈ [0, tf ],
Other constraints...

(AOCP)

⇒ ẑ = (x̂ , û) solution of (AOCP).

Is ẑ inside the validity region of the dynamics model ĝ ?
Does it look like a real trajectory ?

Pilots acceptance Air Traffic Control2

How can we quantify the closeness from the optimized
trajectory to the set of real flights?

2NATS UK air traffic control
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⇒ ẑ = (x̂ , û) solution of (AOCP).

Is ẑ inside the validity region of the dynamics model ĝ ?
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OPTIMIZED TRAJECTORY LIKELIHOOD

Assumption: We suppose that the real flights are observations of
the same functional random variable Z = (Zt) valued in C(T,E ),
with E compact subset of Rd and T = [0, tf ].

How likely is it to draw the optimized trajectory from the law
of Z ?
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HOW TO APPLY THIS TO FUNCTIONAL DATA?

Problem: Computation of probability densities in infinite
dimensional space.

Standard approach in Functional Data Analysis: use
Functional Principal Component Analysis to decompose the
data in a small number of coefficients

Or: we can use the marginal densities
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HOW DO WE AGGREGATE THE MARGINAL

LIKELIHOODS?

ft marginal density of Z , i.e. probability density function of Zt ,

y new trajectory,

ft(y (t)) marginal likelihood of y at t, i.e. likelihood of
observing Zt = y (t).

MEAN MARGINAL LIKELIHOOD

MML(Z , y ) =
1

tf

∫ tf

0
ψ[ft , y (t)]dt,

where ψ : L1(E , R+)×R→ [0; 1] is a continuous scaling map,

because marginal densities may have really different shapes.
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HOW DO WE AGGREGATE THE MARGINAL

LIKELIHOODS?

Possible scalings are the normalized density

ψ[ft , y (t)] :=
ft(y (t))

max
z∈E

ft(z)
,

or the confidence level

ψ[ft , y (t)] := P (ft(Zt) ≤ ft(y (t))) .
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HOW DO WE DEAL WITH SAMPLED CURVES?

In practice, the m trajectories are sampled at variable discrete
times:

T D := {(trj , z rj )} 1≤j≤n
1≤r≤m

⊂ T× E , z rj := z
r (trj ),

Y := {(t̃j , yj )}ñj=1 ⊂ T× E , yj := y (t̃j ).

Hence, we approximate the MML using a Riemann sum which
aggregates consistent estimators f̂ mt̃j of the marginal densities ft̃j :

EMMLm(T D ,Y) :=
1

tf

ñ

∑
j=1

ψ[f̂ mt̃j , yj ]∆t̃j .
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HOW DO WE DEAL WITH SAMPLED CURVES?

In practice, the m trajectories are sampled at variable discrete
times:

T D := {(trj , z rj )} 1≤j≤n
1≤r≤m

⊂ T× E , z rj := z
r (trj ),
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aggregates consistent estimators f̂ mt̃j of the marginal densities ft̃j :
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HOW CAN WE ESTIMATE MARGINAL DENSITIES?

In practice, the altitude plays the role of time, so we can’t
assume the same sampling for each trajectory;

Assume sampling times {trj : j = 1, . . . , n; r = 1, . . . ,m} to be
i.i.d. observations of a r.v. T , indep. Z ;

Our problem can be seen as a conditional probability density
learning problem with (X ,Y ) = (T ,ZT ), where ft is the
density of Zt = (ZT |T = t) = (Y |X ).

1 We can apply SOA conditional density estimation techniques,
such as LS-CDE [Sugiyama et al., 2010],

2 We can use a fine partitioning of the time domain.
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PARTITION BASED MARGINAL DENSITY ESTIMATION

Idea: to average in time the marginal densities over small bins by
applying classical multivariate density estimation techniques to
each subset.
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CONSISTENCY

We denote by:

Θ : S → L1(E , R+) multivariate density estimation statistic,

S = {(zk)Nk=1 ∈ EN : N ∈N∗} set of finite sequences,

m the number of random curves;

T m
t subset of data points whose sampling times fall in the bin

containing t;

f̂ mt := Θ[T m
t ] estimator trained using T m

t .
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CONSISTENCY

ASSUMPTION 1 - POSITIVE TIME DENSITY

ν ∈ L∞(E , R+) density function of T , s.t.

ν+ := ess sup
t∈T

ν(t) < ∞, ν− := ess inf
t∈T

ν(t) > 0.

ASSUMPTION 2 - LIPSCHITZ IN TIME

Function (t, z) ∈ T× E 7→ ft(z) is continuous and

|ft1(z)− ft2(z)| ≤ L|t1 − t2|, L > 0.

ASSUMPTION 3 - SHRINKING BINS

The homogeneous partition {Bm
` }

qm
`=1 of [0; tf ], with binsize bm, is

s.t.
lim

m→∞
bm = 0, lim

m→∞
mbm = ∞.
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CONSISTENCY

ASSUMPTION 4 - I.I.D. CONSISTENCY

G arbitrary family of probability density functions on E , ρ ∈ G,

SN
ρ i.i.d sample of size N drawn from ρ valued in S .

The estimator obtained by applying Θ to SN
ρ , denoted by

ρ̂N := Θ[SN
ρ ] ∈ L1(E , R+),

is a (pointwise) consistent density estimator, uniformly in ρ:

For all z ∈ E , ε > 0, α1 > 0, there is Nε,α1 > 0 such that, for any ρ ∈ G,

N ≥ Nε,α1 ⇒ P
(∣∣∣ρ̂N(z)− ρ(z)

∣∣∣ < ε
)
> 1− α1.
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CONSISTENCY

THEOREM 1
Under assumptions 1 to 4, for any z ∈ E and t ∈ T, f̂ m`m(t)(z)

consistently approximates the marginal density ft(z) as the number
of curves m grows:

∀ε > 0, lim
m→∞

P
(
|f̂ mt (z)− ft(z)| < ε

)
= 1.

Note that:

m→ ∞ 6= N → ∞,

Number of samples = random,

Training data not i.i.d.
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MARGINAL DENSITY ESTIMATION RESULTS
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HOW GOOD IS IT COMPARED TO OTHER METHODS?

Training set of m = 424 flights ' 334 531 point observations,

Test set of 150 flights

Discrimination power comparison with (gmm-)FPCA and
(integrated) LS-CDE:

Var. Estimated Likelihoods

Tr. Time

Real Opt1 Opt2
MML 0.63 ± 0.07 0.43 ± 0.08 0.13 ± 0.02

5s

FPCA 0.16 ± 0.12 6.4e-03 ± 3.8e-03 3.6e-03 ± 5.4e-03

20s

LS-CDE 0.77 ± 0.05 0.68 ± 0.04 0.49 ± 0.06

14h
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MML PENALTY

The MML can be used not only to assess the optimization
solutions, but also to penalize the optimization itself:

min
(x,u)∈X×U

∫ tf

0
C (u(t), x(t))dt − λ MML(Z , x),

s.t.
{

ẋ(t) = ĝ(u(t), x(t)), a.e. t ∈ [0, tf ],
Other constraints...

(MML-AOCP)

λ sets trade-off between a fuel minimization and a likelihood
maximization,
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PENALTY EFFECT
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TRAJECTORY ACCEPTABILITY CONCLUSION

1 General probabilistic criterion using marginal densities to
quantify the closeness between a curve and a set of random
trajectories,

2 Class of consistent plug-in estimators, based on “histogram”
of multivariate density estimators,

3 Applicable to the case of aircraft climb trajectories,

Competitive with other well-established SOA approaches,

4 Particular Adaptive Kernel and Gaussian mixture
implementation,

Showed that it can be used in optimal control problems to
obtain solutions close to optimal, and still realistic.
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ACCURACY OF DYNAMICS PREDICTIONS

FIGURE: Leave-one-out off-sample errors distributions for nonlinear
least-squares NLLS and block-sparse bolasso BSBL. Median errors are
annotated and marked by dashed vertical lines.



51/49

STRUCTURED FEATURE SELECTION

STATE-OF-THE-ART

Other methods Difference with Block-sparse Lasso

Group Lasso Groups sparsity is fixed a priori,
[Yuan and Lin, 2005]

Sparse Group Lasso Sparsity induced only within group,
[Friedman et al., 2010]

Multi-task Lasso Not same pattern for every task.
[Obozinski et al., 2006]
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THEOREM (BOLASSO CONSISTENCY - BACH [2008])
For λ = λ0N

− 1
2 and λ0 > 0, assume that

(H1) the cumulant generating functions E
[
exp(s‖X‖2

2)
]

and E
[
exp(s‖Y ‖2

2)
]

are finite for some s > 0.

(H2) the joint matrix of second order moments
Q = E

[
XX>

]
∈ Rp×p is invertible.

(H3) E [Y |X ] = X · θ and Var [Y |X ] = σ2 a.s. for some
θ ∈ Rp and σ ∈ R∗+.

Then, for any b > 0, the probability that algorithm 1 does not
exactly select the correct model has the following upper bound:

P [J 6= J∗] ≤ bA1e
−A2N + A3

logN

N1/2
+ A4

log b

b
,

where A1,A2,A3,A4 > 0.
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GENERALIZED TIKHONOV REGULARIZATION OF ISP

Equivalent to ‖Γ(θ− θ̃)‖2
2 with Γi = ( 0, . . . , 0,︸ ︷︷ ︸

dT+dD+dL

X>Isp) and

Γi θ̃ = Ĩsp,i .
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MML CONSISTENCY FOR STANDARD KERNEL

ESTIMATOR

ASSUMPTION 5
The function (t, z) ∈ T× E 7→ ft(z) is C4(E ) in z and C1(T) in t
; the Lipschitz constant of the function

t 7→ d2ft
dz2

(z) := f ′′t (z)

is denoted by L′′ > 0: for any z ∈ E and t1, t2 ∈ T,

|f ′′t1
(z)− f ′′t2

(z)| ≤ L′′|t1 − t2|.
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MML CONSISTENCY FOR STANDARD KERNEL

ESTIMATOR

σ2
Kσ

=
∫

w2Kσ(w)dw = σ2
∫

w2K (w)dw = σ2σ2
K ,

σ2
K2

σ
=
∫

w2Kσ(w)2dw = σ
∫

w2K (w)2dw = σσ2
K2 ,

R(Kσ) =
∫

Kσ(w)2dw =
1

σ

∫
K (w)2dw =

1

σ
R(K ).

THEOREM 2
Under assumptions 1, 3 and 5, if f̂ m`m(t) is a KDE where the kernel

K and the bandwidth σ := σm are deterministic, such that
σK < ∞, σK2 < ∞, R(K ) < ∞ and if

lim
m→∞

σm = 0, lim
m→∞

mbmσm = +∞,

then
lim

m→∞
E
[
(f̂ m`m(t)(z)− ft(z))

2
]
= 0.
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THEOREM 1 PROOF SKETCH

lim
m→∞

|ft(z)− f m`m(t)(z)| = 0.

lim
m→∞

P(Nm
r ,`m(t) ≤ 1) = 1, r = 1, . . . ,m,

∀M > 0, lim
m→∞

P
(
Nm
`m(t) > M

)
= 1.

CM := {Nm
`m(t) > M}

m⋂
r=1

{Nm
r ,`m(t) ≤ 1}.

∀M > 0, lim
m→∞

P (CM) = 1.

∀ε > 0, lim
m→∞

P
(
|f̂ m`m(t)(z)− f m`m(t)(z)| < ε

)
= 1.
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FLIGHT MECHANICS MODELS

ρ = P
RsSAT

SAT (h) = T0 + αTh, SAT (TAT ,M) = TAT
1+ λ−1

2 M2

M = V
Vsound

= V

(λRsSAT )
1
2
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CONSUMPTION X ACCEPTABILITY TRADE-OFF

FIGURE: Average over 20 flights of the fuel consumption and MML score
(called acceptability here) of optimized trajectories with varying
MML-penalty weight λ.
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GAUSSIAN MIXTURE MODEL FOR MARGINAL

DENSITIES

ft(z) =
K

∑
k=1

wt,kφ(z , µt,k , Σt,k),

K

∑
k=1

wt,k = 1, wt,k ≥ 0,

φ(z , µ, Σ) :=
1√

(2π)d det Σ
e−

1
2 (z−µ)>Σ−1(z−µ).

Assuming that the number of components is known, the weights
wt,k , means µt,k and covariance matrices Σt,k need to be
estimated.
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MAXIMUM LIKELIHOOD PARAMETERS ESTIMATION

For K = 1, maximum likelihood estimates have closed form:

L(µt,1, Σt,1|z1, . . . , zN) =
N

∏
i=1

1√
(2π)d det Σt,1

e−
1
2 (z−µt,1)>Σ−1

t,1 (z−µt,1)

θ̂ := (µ̂t,1, Σ̂t,1) = arg min
(µt,1,Σt,1)

N

∑
i=1

(
log det Σt,1 + (zi − µt,1)

>Σ−1
t,1(zi − µt,1)

)

µ̂t,1 =
1

N

N

∑
i=1

zi , Σ̂t,1 =
1

N

N

∑
i=1

(zi − µ̂t,1)(zi − µ̂t,1)
>.
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EM ALGORITHM

Hidden random variable J valued on {1, . . . ,K},
If i th observation Ji = k , then zi was drawn from the kth

component,

Group observations by component and compute (µ̂t,k , Σ̂t,k ) with
K = 1 maximum likelihood formulas.

EXPECTATION-MAXIMIZATION - [DEMPSTER ET AL., 1977]
Initialization: θ̂ = (ŵt,k , µ̂t,k , Σ̂t,k )

K
k=1 = (w0

t,k , µ0
t,k , Σ0

t,k )
K
k=1,

Expectation: For k = 1, . . . ,K and i = 1, . . . ,N,

ŵt,k =
1

N

N

∑
i=1

π̂k,i , π̂k,i := P(Ji = k |θ̂t ,Zh) =
µ̂t,kφ(zi , µ̂t,k , Σ̂t,k )

∑N
j=1 ŵt,kφ(zj , µ̂t,k , Σ̂t,k )

.

Maximization:

µ̂t,k =
∑N

i=1 π̂k,izi

∑N
i=1 π̂k,i

, Σ̂t,k =
∑N

i=1 π̂k,i (zi − µ̂t,k )(zi − µ̂t,k )
>

∑N
i=1 π̂k,i

.


	Context
	System Identification
	Trajectory acceptability
	Appendix

